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Summary. A model is presented for "anomalous rectification" based upon electrical 
measurements on the egg cell membrane of the starfish. The objective is to postulate a 
plausible molecular mechanism which yields an expression for the conductance similar to 
that deduced empirically by Hagiwara and Takahashi (1974), i.e., 

B CIK/2 
GK= 

1 + exp , - - ~ - - /  

where B, A V h and v are constant, c K is the external K + concentration, and A V(= V-Vo) is 
the displacement of the membrane potential from its resting value. It is shown that a 
similar dependence of the conductance on A V is expected for a particular class of models 
in which the K + ions are also implicated in "gating". To give a specific example, we 
consider the case in which the formation of ion-permeable pores requires a voltage- 
induced orientation of membrane-bound, electrically-charged groups and subsequent 
complexation of these groups with the external cations. Furthermore, the proportionality 
between G~ and c~/2, when the internal K + concentration is constant, is accounted for by 
conventional descriptions of the ionic fluxes using Eyring's rate reaction theory, in terms 
of the present model, B and A V h are explicit functions of the internal K + concentrations 
and are thus constant only as long as this is unvaried. The particular value of v required 
to fit the data (v-~ 8.4 mV) is rationalized by the assumption that each of the orientable 
groups carries three negative elementary charges. In addition, the predictions of the 
present model are compared with those deduced from an alternative viewpoint, which is 
related to Armstrong's "blocking particle hypothesis", in that the probability for opening 
and closing of the pore is assumed to depend on whether the pore is occupied or empty. 
Differences and similarities between the two models, as well as ways to discriminate 
between them, are discussed. 

A. Introduction 

Katz (1949) studied the electrical characteristics of frog twitch muscle 
fibers in an isotonic K2SO 4 solution. Despite the fact that in this 

0022-2631/78/0044-0103 $06.40 
�9 Springer-Verlag New York Inc. 1978 



104 S. Ciani, S. Krasne, S. Miyazaki, and S. Hagiwara 

condition the external and internal K § concentrations are almost identi- 
cal, he found that the membrane conductance was much higher for 
inward than outward current. This phenomenon has been referred to as 
"inward-going" or "anomalous" rectification, and its electrophysiologi- 
cal properties have been studied in detail (Hodgkin & Horowicz, 1959; 
Adrian & Freygang, 1962a-b; Nakajima, Iwasaki & Obata, 1962; Ad- 
rian, 1964, 1969; Horowicz, Gage & Eisenberg, 1968; Adrian, Chandler 
& Hodgkin, 1970; Almers, 1971, 1972). 

Recently, a similar rectification was found in other tissues, namely, in 
the egg cell membrane of a tunicate (Takahashi, Miyazaki & Kidokoro, 
1971; Miyazaki etal., 1974), and also of certain starfish (Hagiwara & 
Takahashi, 1974; Miyazaki, Ohmori & Sasaki, 1975; Hagiwara, Miya- 
zaki & Rosenthal, 1976). An extensive characterization of the per- 
meability properties of these cells has been carried out, leading to the 
discovery of some analogies with those of skeletal muscle fibers. 

This paper deals with speculations on a possible mechanism for 
"'anomalous rectification" and develops a quantitative description which 
accounts for the steady-state electrical properties of starfish egg cell 
membranes when K + is the only permeant ion in the bathing medium. 

The relevant properties can be summarized as follows (Hagiwara & 
Takahashi, 1974; Hagiwara etal., 1976): 

1) The membrane is impermeable to anions and behaves as an ideal 
potassium electrode when potassium is the only permeant cation present 
in the bathing medium. 

2) The current-voltage relationship shows a very pronounced inward 
rectification. When potassium is the sole permeant ion present, the 
steady-state conductance can be fitted by the expression 

Bp(cK) 
GK= 1 + exp (AV;-AVh) ' (1) 

where c K is the external concentration of potassium and p(CK) is approxi- 

mately p ( c•) ~- c~/2. (2) 

B, AV h and v are constants for a particular type of cell and AV is the 
displacement of the membrane potential, V, from the zero-current mem- 
brane potential, Vo; namely 

d V= V -  V o. (3) 

In addition, these channels exhibit the property that in K +-T1  + mix- 
tures both the conductance and zero-current potential go through a 
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minimum when the mole fraction is varied (Hagiwara & Takahashi, 
1974; Hagiwara et al., 1977), and the model proposed here can easily be 

extended to account for this observation. 
In the attempt to develop a model that predicts a dependence on A V 

( = V -  V0) for the conductance similar to that of Eq. (1), we shall consider 
two classes of mechanisms, each of which is compatible with a variety of 
particular physical models. Since a relationship between the conductance 
and A V, as shown in Eq. (1), is just a convenient way of formulating 
concisely the dependence on two separate parameters, membrane poten- 
tial and external ion concentration, we shall start from the hypothesis 
that both these parameters play an essential role in "gating". In both 
classes of mechanisms we have limited our considerations to the case in 
which the channel is either empty or occupied by a single ion (i.e., we 
don't  consider the cases in which more than one ion can be present 
inside the channel at the same time). 

In one class of mechanisms, the formation of permeable channels 
requires a chemical interaction between the external ions and some 
membrane-bound structures via pathways that are totally different from 
those of permeation, while the role of the electric field can be by action 
either on the membrane-bound structures prior to the interaction with 
the ions, or after, or also on the ions themselves. A typical example of 
this class of mechanisms would be that in which the formation of pores 
occurs via orientation of membrane-bound dipoles (by the applied field) 
and subsequent complexation with the external ions. For the sake of 
convenience, we shall refer to this class of mechanisms as "electro- 
chemical gating". 

In the second class of mechanisms, the ions are also implicated in 
"gating", although, in contrast to the previous case, the pathways 
through which they influence gating are the same as those through which 
they permeate the membrane. More precisely, the channel is viewed as a 
sequence of activation energy barriers whose heights can vary as a result 
of kinetic transitions between different conformational states. Thus, a 
blocked channel is one in which at least one barrier is sufficiently high to 
prevent significant translocation of ions, and opening of the channel 
corresponds to a transition whereby that barrier is lowered and per- 
meation restored. The probability for opening and closing are assumed 
to depend on the state of occupancy of the channel, and thus, if the 
channel has at least one internal site (i.e., local energy minimum), the 
presence of an ion at that site will influence "gating". For convenience, 
we shall refer to this second class of mechanisms as "occupancy gating". 
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A model for "inward rectification" proposed by Armstrong (1975), in 
which opening of the pore is caused by direct interaction between the ion 
in the pore and a postulated blocking particle ("knock-on" mechanism), 
may be considered as an example of this second class of mechanisms. 

We have found that the predictions of the "electro-chemical gating" 
model can account for Eq. (1) more readily than the "occupancy gating" 
model, and thus the main part of the paper will derive and examine the 
predictions for "inward rectification" based on the former model, where- 
as a treatment of the latter will be given in Appendix B. The principal 
results of both classes of models will be examined and compared in the 
Discussion section. 

Mechanism for Pore Formation 
in the "Electro-Chemical Gating" Hypothesis 

As we have already suggested, there are undoubtedly many particular 
physical models, all within the domain of the "electrochemical gating" 
hypothesis, that could be described by similar equations and that would 
eventually give the same result. Therefore, the physical model analyzed 
below should be considered one of the many alternatives which has been 
chosen for its simplicity, but without implying that it faithfully represents 
physical reality. 

One of the reasons for selecting the physical model presented here is 
that it was suggested by mechanisms which have been postulated to 
explain the voltage-dependent conductance induced in artificial lipid 
bilayers by various antibiotics, most notably alamethicin (Baumann & 
Mueller, 1974; Boheim, 1974; Gordon & Haydon, 1975; Boheim & 
Kolb, 1978; Kolb & Boheim, 1978). It may be useful to illustrate some 
similarities between the behavior of the biological systems considered in 
this paper and that of artificial bilayers in the presence of alamethicin. At 
a given ion concentration, and in the simple case where potassium is the 
sole permeant ion, the membrane conductance, of starfish egg cells, as 
well as of muscle, is a strong function of voltage, which increases with 
hyperpolarization and decreases with depolarization. Qualitatively simi- 
lar voltage dependences and analogous rectifying properties can be 
reproduced in bilayers when the antibiotic alamethicin is added to one 
side of the membrane only. In this case, positive potentials on the 
alamethicin-containing side induce sharp increases of the conductance, 
while oppositely directed potentials have little effect. A commonly accept- 
ed interpretation of this finding is that the highly polar alamethicin 
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molecules adsorb to the membrane surface adjacent to the antibiotic- 
containing solution, and, on account of their dipole moment, orient 
themselves perpendicularly to the surface when a positive potential is 
applied on the side of alamethicin. Subsequent stepwise aggregation of 
the oriented molecules or, according to more recent work, orientation of 
partially pre-formed aggregates and consecutive aggregation of ad- 
ditional monomers (Boheim & Kolb, 1978; Kolb & Boheim, 1978) would 
eventually lead to the formation of conductive pores of progressively 
larger sizes. The failure to produce any conductance when a voltage is 
applied in the opposite direction is generally explained by the assump- 
tion that the negative end of the molecule adsorbs more strongly to the 
membrane solution interface. A similar mechanism is postulated in our 
model, in which preformed aggregates of interconnected, negatively- 
charged, and simultaneously orientable subunits are assumed to exist in 
the membrane (see Fig. 1). 

Besides being dependent on voltage, the conductance of '~ 
alously rectifying cells" is also a function of the external concentration of 
potassium. This can be recognized from inspection of Eq. (1), where the 
concentration of external potassium appears explicitly in the numerator, 
and implicitly in the denominator, via A V. Whereas it seems plausible 
that the square root dependence on potassium concentration in Eq. (1) 
reflects properties of the single channel conductance (see Section B-3), it 
is less likely that single channel effects are responsible for the dependence 
on c K via A V. We shall, therefore, assume that the dependence on 3 V is 
the result of an effect of potassium concentration on the actual number 
of permeant channels. As is shown later, this feature can be accounted 
for if, in addition to voltage-dependent orientation of the macromolec- 
ular components, binding with the external cations is also assumed 
necessary for pore formation (see Fig. 1). 

The following basic features of the model are illustrated in Fig. 1 : The 
internal side of the membrane contains molecules constituted of n 
interconnected subunits, which orient themselves perpendicularly to the 
membrane (and simultaneously) under the influence of an electric field, (n 
=3 in our model). More precisely, one end of each subunit in the 
molecule is anchored to the internal side of the membrane, while the 
opposite one, which bears a negative charge, can flip toward the exterior. 
When the molecule is oriented by the electric field, it spans the whole 
membrane thickness, so that the negative charges become exposed to the 
external solutions and may each bind one cation. The oriented molecules 
are denoted by A*, where the subscript, s, (0 < s < n) specifies the number 
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Fig. 1. Schematic representation of a particular case of the "electrochemical gating" class 
of models. (a)i It is assumed that orientation of the charged molecules, A0, located at the 
inner side of the membrane, is required for the formation of permeable pores and that 
stepwise complexation of the three charged sites with the external cations is necessary for 
stabilization of such pores. (b) Complexes between the unoriented channel precursors 
and the internal cations. It is assumed that orientation of these species is negligible 
compared to that of the uncomplexed ones, A*. Justifications for this assumption are 

given in the text 

of  cha rged  subuni ts  wi th  one b o u n d  cat ion,  and  the as ter i sk  is used 

cons is ten t ly  to deno te  those  molecu les  which  have  been  o r i en ted  by  the 

electric field. 
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Whereas it is convenient to schematize the pore-forming molecule as 
composed of an aggregate of n subunits, the present formalism describes 
equally well a single unit (e.g., a globular protein) containing n negative 
groups which traverse the membrane under the influence of an electric 
field, bind cations, and, in so doing, change the conformation of the 
molecule from a nonconducting to a conducting channel. Results similar 
to those deducible from this class of models would also be obtained from 
a model in which n external cations ("gating ions"), rather than any 
polar membrane components, move under the action of the electric field 
through the pore-forming molecule and bind to n "gating" sites within 
the molecule near the inner membrane surface, thereby inducing a 
conformational change (from "closed" to "open"). It should be em- 
phasized, however, that according to this picture the pathway for the 
movement of the "gating" ions is meant to be distinct from the pathway 
of permeation; which also implies that the "gating" ions are generally 
not in equilibrium either with the internal solution or with the permeat- 
ing ions in the channel. 

Formally, the major requirement of the model is that the effect on 
gating of voltage and external K + concentration be representable as a 
function of the following combination of these variables: c~ e - ~ ,  where 
~b denotes the membrane potential in units of RT/F. After we demon- 
strate that this requirement is satisfied by the specific physical model 
analyzed below, it will probably become clear to the reader that similar 
functional dependences are to be expected also for various different 
physical pictures, including the few mentioned above. 

B. Theoretical Results 

If n is the total number of subunits in each pore-forming molecule (n 
= 3 in Fig. 1), there are n + t types of pores corresponding to the number 
of cations bound. Since all of these may be conductive, the specific 
membrane conductance is 

G= ~ ~[A*~], (4) 
s = 0  

where gs is the conductance of an individual pore with s bound cations, 
denoted by A*, and [A*] is the number of such pores per unit surface. 
From now on, the A* species (s=0, 1, 2 . . . .  , n) will be called either 
"pores," "channels," or "oriented molecules," whereas the same mol- 
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ecules, prior to orientat ion by the field, will be denoted by A s (s=O, 1, 
2, .. . ,  n) and will be referred to as "unor iented  (pore-forming) molecules," 
or "channel  precursors." 

In Section B-l, we shall evaluate how [A*] depends upon  membrane  
potential  and ion concentration. In Section B-2, we shall show that, 
under  certain condit ions and assumptions,  the density of permeable 
channels can be expressed as a function of A V, namely, of the displace- 
ment  of the membrane  potential  from its equil ibrium value. Section B-3 
will present the derivation of an expression for the "average" single pore 
conductance and of the overall membrane  conductance,  as defined by 
Eq. (4). 

B-1. Dependence, at Steady State, of the Density of Permeable Pores 
on Ion Concentration and Membrane Potential 

It is shown in Appendix A (see also Fig. 4) that, in order to deduce 
rigorously the dependence, at steady state, of the pore density [-A*] on 
the total concentrat ion of pore-forming molecules, I-A] T~ on the rate 
constants for ion binding to and orientat ion of these molecules, on the 
membrane  potential, and on the concentrat ion of binding ions, one 
would have to solve a nonhomogeneous  system of 2 n + 2  linear equa- 
tions. For  n > 2, therefore, the number  of parameters would be very large 

�9 and the algebra impractically cumbersome.  We shall c ircumvent  this 
difficulty by making the following simplifying assumption:  

The only molecular species capable of undergoing orientation (in one direction or 
the other) and which therefore respond to changes of a transmembrane electric field 
are those which have no bound cations and therefore carry their full negative charge, 
he. The remaining species with at least one bound cation, either oriented or not, are 
assumed to adopt a physical configuration in which the process of rotation is blocked. 

As is shown in Appendix A, this assumption reduces the very lengthy 
steady-state kinetic problem ment ioned  above to a much  simpler "part ial  
equil ibrium" problem, and provides probably the simplest route to the 
derivation of Eq. (1) from the particular physical model  that  we have 
chosen to describe. Some implications of this assumption are intuitively 
plausible, whereas others may sound objectionable and require some 
justification. Thus, the implication that  the molecular  species most  
sensitive to the electric field are those carrying the highest charge is 
clearly reasonable. On the other hand, the not ion that  the uncharged or 
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partially charged molecules don't rotate or, in any case, move less easily 
than the fully charged ones is in conflict with simple electrostatic 
arguments, whereby the hydrocarbon interior of the membrane should 
provide a higher barrier to the most charged species than to the neutral 
and the less charged ones. Rather than speculating arbitrarily on the 
possible ways to obviate this difficulty (which can certainly be done), we 
prefer simply to recall that, on the basis of the past experience with 
permeation through bilayers, the net charge of a molecular species is 
neither the only, nor necessarily the most important, parameter de- 
termining the rate constants for crossing a lipid membrane. It has been 
found, for example, that the ion-carrier valinomycin crosses the mem- 
brane at the same rate in its neutral as in its complexed charged form 
(Stark et al., 1971), which is probably accountable by the fact that the 
acquisition of an electric charge with consequent increase of the Born 
energy barrier is compensated by a conformational change, whereby 
either the hydrophobic interaction with the membrane is enhanced 
and/or the stabilizing interaction between water and the polar groups of 
valinomycin is reduced. It is, therefore, quite reasonable to conceive that 
analogous compensating effects may be present in the gating molecules 
of our model: In particular, ion binding might be accompanied by a 
change of physical state which either hinders the rotation sterically or 
stabilizes the interaction between polar groups of the molecule and water 
at the interfaces, thus blocking the process of orientation. Furthermore, a 
number of physical factors may differ for the ion-binding sites in the 
unoriented and oriented molecules, such that the equilibrium constant 
for ion binding may be large for the oriented molecule but small for the 
unoriented molecule (e.g., the charge density of the binding site might be 
lower for the unoriented molecule, as schematically illustrated in Figs. 1 a 
and b, or steric constraints which disfavor ion binding may exist in the 
unoriented form). In this case, the predominant species of unoriented 
molecules might actually be the one with no complexed ions, this species, 
therefore, being the only one to give a significant contribution to the re- 
orientation induced by the field. 1 

1 In any case, it should be pointed out that the difficulties intrinsic to the assumption 
discussed above arise from the particular physical picture for "electrochemical gating" 
that we have chosen to describe. Had we selected one of the alternative models briefly 
mentioned previously in the paper, such as the one, for example, in which the channel 
formation requires the movement of n external "gating" ions up to the n binding sites 
situated close to the internal surface (although inaccessible from the internal solution), 
the derivation of Eq. (1) would have been possible without that type of restrictive 
assumption. 
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With the aid of the above assumption, it is shown in Appendix A that 
the steady-state densities of oriented, uncomplexed molecules, [A~], of 

A* oriented, complexed molecules, [ s], of unoriented, uncomplexed mol- 
ecules, [Aol, and of unoriented, complexed molecules, [As] , are in- 
terrelated as follows: 

[A~] =Fez"* [-Ao]. (5) 

[ A * ] -  * s (s=1,2,  . n) (6) - K  s [A*] c i .. , 

[As3=Ks[AoJ cl s ( s= l ,  2, ..., n), (7) 

where c~ and c'~ denote the external and internal concentrations, re- 
spectively, of the permeant ion (e.g., K+), Fe ~"4', K's, and K s are the 
equilibrium constants of the following reactions 

Fezn4~ 

a o ,  (s) 

K* 
A~ + s. I +2~ A * (9) 

Ks 
A o + s . I ' ~  ~A~, (10) 

and q~ is the potential in units of R T/F. 
Combining the conservation equation, 

[A]T~ {[Ar]+[A*]}=[Ao]§  ~ K~ci~[Ao]+ K* ci[Ao] 
~=o ,=1 ~=1 (11) 

with Eqs. (5) and (6), and recalling that z = -1 ,  then yields 

and 

Fe-  n~ [A]Tot 
[ A ; ]  = . (12) 

l +  ~ K~ci~+Fe -"4 1 +  K ' c ;  
r = l  = 

- n~b s T o t  

[A*]= K ' r e  ciEA] ,~ ( s=l ,  2,. . . ,n).  (13) 

1+ ~ K,.c;" +Fe - '~ [1 +r~ K*c:] 
r = l  

Equations (12) and (13) can be rewritten more concisely. Defining 

[ ]1 
co= 1+ K,.cl ~ (14) 

r = l  
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which is a function of the internal concentration only, and defining also 
K~ = 1, Eqs. (12) and (13) are equivalent to the following expression: 

ci [ a ]  (s = 0, i, . . . ,  n). (15) [ A 2 ' 3 -  c o r e -  "* K *  s Tot 

l +coFe-"~ [l + ~= K* c'] 

Equation (15) gives the density of all types of oriented molecules in terms 
of experimentally controllable variables, such as the membrane potential 
and the external concentration of ions, and shows that the density of 
oriented molecules of any type vanishes at high depolarizing potentials, 
whereas it approaches a finite limit at high hyperpolarizing potentials. 

Although Eq. (15) would be adequate to fit all the available data for 
the starfish egg cell membrane conductance, the much simpler empirical 
expression, Eq. (1), which is sufficient to describe the data for starfish egg 
cell membranes, will be shown in the next section to correspond to the 
limiting case in which the fully-complexed pores, A*, predominate over 
all the other species of oriented molecules. 

B-2. Dependence of  the Density of  Permeable Channels on A V 

When potassium is the sole permeant ion present, the zero-current 
potential, Vo, coincides with the potassium equilibrium potential, so that 
we can write 

C* (16) 
c i 

Substituting Eq. (16) into Eq. (15) and defining terms in a way which will 
be convenient for a comparison between the theoretical expression of the 
conductance, Eq. (23), and the empirical expression, Eq. (1), we can write 

where 

L s [A] T~ 
[As*] =Z- (s--O, 1, ..., n) (17) 

A v :  R T  
F (~-0o)  (lS) 

R T  
v nF (19) 
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and 

Ls=COFcl '~ K~ cl s-'~ (s=0,  1, ..., n) (20) 

n 

L =  ~ C s (21) 
s = O  

e x p [ _ ~ ] = L _ l = [ c o F c l n ] _  1 c'{ (22) 

K* c7 
s = 0  

Substi tuting Eq. (17) into Eq. (4) yields 

" L 

s=Y  So G = [A] T~ 
1 +exp  [A V - A  Vh_] " v (23) 

Compar ing  now this expression with Eq. (1), and attr ibuting the square 
root  term in Eq. (1) to the properties of the individual channel con- 
ductances, (,s (see next section), it is easy to realize with the help of Eq. 
(22) that  a meaningful  similarity between the theoretically derived Eq. 
(23) and the phenomenologica l  Eq. (1) can be claimed if the inequality 

n - 1  

K* " , s (24) ci > ~ K s c i 
s = 0  

is satisfied in the range of the examined concentrations.  As shown by Eq. 
(22), it is in fact only in this case that  A V h becomes independent  of the 
external ion concentrat ions and can thus be considered constant.  Clearly, 
if experiments could be carried out at sufficiently low concentrat ions 

n (e.g., c i <l/K,,) ,  a domain  should be eventually found in which re- 
lationship (24) would not  be satisfied and A V h would depend on q.  F r o m  
the presently existing data, which are certainly consistent but do show a 
certain amount  of scattering from cell to cell, it is difficult to assess how 
strictly the constancy of AV h is required for a good fit. However,  two 
impor tan t  observations pertinent to this point  can be readily made:  (i) If 
relationship (24) is not satisfied so that  A V h does vary with c i according 
to Eq. (22), it is hard to obtain from Eq. (23) a square root  dependence 
on c~ (at equal A V's) similar to that  found experimentally. (ii) In addition, 
it is worth point ing out that  the discrepancy in Fig. 2 between the data 
and the theoretical curve at 10 m g  cannot  be corrected by the assump- 
tion that  at such a low concentrat ion A V h starts varying with ci according 
to Eq. (22). In fact, in order to bring the curve closer to the data, a 
decrease of A V h from the value corresponding to the upper curves would 
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be required as the external K + concentration is decreased; whereas Eq. 
(22) predicts a change in the opposite direction for decreasing external 
K + concentrations. 

Therefore, restricting considerations to the case in which relationship 
(24) is satisfied, it is straightforward to realize with the help of Eqs. (20) 
and (21) that 

Ls~Ln~-L, s=0, 1, ..., n - 1 .  (25) 

With this approximation and recalling Eq. (17), we find that 

[ a ]  T~ 

[A]] ,~ [A*] = d V -  A ' s = 0, 1 .... , n - 1 (26) 

i+exp[-t -v ~ ]  

where, by virtue of relationship (24), Eq. (22) becomes independent of the 
external K + concentration and simplifies to 

exp [ - ~ ]  ~- [o3 F c'~" K *] -1. (27) 

Equations (26) and (27) show that, when the condition (24) is satisfied, 
the dependence of the pore density on the membrane voltage and on the 
external ion concentration can be expressed as a dependence on AV 
alone. Within the limits of validity of the same approximation, the 
membrane conductance, Eq. (23), reduces to 

G = [A] To' L (28) 

l+exp[ 7 ] 
Note that the rectification properties embodied in Eq. (28) are due to the 
feature of the present model that the number of pores vanishes at large 
depolarizing potentials while approaching the finite value, [A] r~ at 
large hyperpolarizing potentials. 

B-3. Dependence of the Open Pore Conductance on Ion Concentration 
and Final Expression jbr the Membrane Conductance 

We can see from the results of the previous section that the con- 
ductance per unit area, Eq. (28), is the same function of A V as that in the 
empirical expression, Eq. (1), provided that the conductance of the single 
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channel gn is independent of transmembrane potential and is pro- 

portional to lfC~. 
Although little information about the properties of the single pore is 

available, we show here that when the internal ion concentration is 
constant, a dependence of the membrane conductance on the square root 
of the external concentration, such as that found experimentally [see Eqs. 
(1) and (2)], can be justified on the basis of conventional flux equations. 
In the absence of effects due to saturation of the channel and in the 
approximation of constant electric field, the expression for the flux of 
ions through the A* pore, as deduced either from Eyring's rate theory or 
the equation of Nernst-Planck, can be written in the form 

a~ - [A~ ] f (dp) { q - c iee}, (29) 

where f(4') is a function of the voltage and of the structure of the 
channel, but is independent of the ionic concentrations, c i and c I. 
Rearranging Eq. (29), adopting the convention that the outward fluxes 
are positive, and assuming that the monovalent cation i is the only 
permeant ion, the membrane conductance becomes 

F 2 2 sinh [ ~  ~~ ] 

G = - ~ f  [A*] l fq~c l f ' (4 )  (p_dpo , (30) 

where 
I F2 4 

G = and if(qS)=f(~b) e '~/2. (31) 
V - V  o R T  c~-C~o 

The behavior of Eq. (30) clearly depends on the function, f'(qS), which is 
unknown. Nevertheless, valuable inferences can still be made if one 
considers certain limiting cases, and takes account of the fact that in the 
usual experimental range of the driving force: (/qS-q~0]<2), the magni- 

tude of the absolute value of 2 sinh [ ~ - ] / ( q S - ~ b o ) v a r i e s  only from l 

to 1.17, and thus can be approximated by unity in most practical cases. 
Using this approximation, Eq. (30) simplifies to 

F 2 
fan*] 4 (32) 

which shows that G depends on the square root of c i for comparable 
values of [A.], (and therefore of A V) only i f f '@)  is a sufficiently weak 
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function of 4 or, ideally, a constant.; Whatever formalism is used to 
describe the fluxes, the explicit form of f ' (4)  depends on the structure 
and the chemical nature of the pore, which in the present system are 
basically unknown. For example, in a description based on Eyring's rate 
theory, the number, height, and position of the energy barriers should be 
known; similarly, the spatial dependence of the diffusion coefficient and 
of the standard chemical potential should be specified when the Nernst- 
Planck equation is used. Despite the lack of knowledge of the microscop- 
ic properties of the pore, it is worth showing that there are simple cases 
in which f'(4) varies very little with the potential. For example, if 
Eyring's formalism is used and the pore is schematized as a symmetrical 
sequence of n sites separated by n -  1 identical activation energy barriers, 
it can be shown that f ' (4)  is proportional to 

sinh [4 / 2 (n -  1)] 
sinh [4/21 ' (33) 

where 4 is the normalized potential and ( n -  1) is the number of energy 
barriers. The most favorable situation is clearly that in which the pore is 
described by a single barrier separating the two solutions. In this case, 
n - 1 = 1 and f ' (4)  is rigorously constant. It can be shown that the greater 
the number of barriers, the less satisfactory the approximation of f'(4) 
with a constant becomes. The least satisfactory situation is that in which 
the number of sites and barriers is so high that 4 < 2 (n -  1) in the whole 
range of applied potentials. In this case, Eyring's formalism merges into 
that of Nernst-Planck, and the function (33) can be approximated by 

1 4 
(34) 

2 ( n -  1) sinh [4/23 
Given that the highest absolute value of the membrane potential for 
which measurements on starfish egg cells were made is of the order of 
140mV (4=5.6), 3 and recalling that, in the worst case, .f'(4) is pro- 

2 Recent "noise analysis" studies of the membrane conductance of certain tunicates 
strongly suggest that the average single channel conductance is indeed proportional to 
the square root of the external potassium concentration (Ohmori, 1978). 
3 The most extreme ranges of absolute membrane potential measured are those obtained 
from the largest hyperpolarization at the lowest value of c K and the largest depolarization 
at the highest value of %. Experimentally, the lowest value of cK measured (see Fig. 2) is 
10 mM for which V o = - 76 mV and the most hyperpolarizing applied potential was A V~- 
- 6 0 m V .  The highest value of c K was 100mM for which V o = - 2 0 m V  and the most 
depolarizing applied potential was A Vm + 15 inV. So, for the data in Fig. 2, the actual 
range of voltages was from - 5  to - 136 mV. It is also worth noting that the experimen- 
tal points for 10 mM K + at the highest hyperpolarizing potentials lie below the theoreti- 
cal curve, which is the type of deviation which is expected if f'(qS) were not rigorously 
constant over the whole voltage range. 
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portional to the function (34), we find 

f ' ( 5 . 6 ) - 0 . 3 5 .  (35) 
f ' ( O )  

Equation (35) shows that in the most unfavorable case, namely when the 
Nernst-Planck formalism is appropriate, f'(qg) will vary by less than a 
factor of 3 for the most extreme excursions of the voltage. 

From the above considerations, it seems that the approximation of 
f'(qS) with a constant is not too arbitrary. Using this approximation, 
defining 

F2 [A]T~ ~ (36) f'=f(qS)-~const, and B - ~  

100- 

hVh=-13.5 mV o 10maK + 

B=255/.Lohms-1 MJ/Z 90- o 25mMK + 

x 50mMK + 
80- alOOrnM K + 

50m 60- 

-X\x  
o . X v~'A | (ff~ 

�9 o ..~_.~. o \ x  y 4o-I- 

. . . . . . .  § \ o  ',x A 3o+ 
I O m M K  " o~ 

I I I I I i o ~ 
-60 -50 -40 -50 -20 -10 + ~ 0 0  +10 +20 

AV (mV) 

Fig. 2. Fit of the steady-state conductance data for the egg cell membrane of the starfish 
Mediastera aequalis with Eq. (37). The four sets of experimental points refer to different 
concentrations of external potassium for the same cell (diameter, 900 gin), and the 
corresponding theoretical curves are calculated from Eq. (37) using the same values for 
the parameters, v, AV h and B, namely: v=8.43mV; AV h = - 1 3 . 5 m V ;  B 

= 253 pE2 ~ �9 M- 1/2 
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and substituting Eqs. (26) and (36) into Eq. (32), we finally find 

G : B  (37t 
1 + exp [(A V -  A Vh)/V]' 

Equation (37) is formally identical to the empirical expressions given by 
Eqs. (1) and (2) at the beginning of the paper. 

A fitting of steady-state conductance data with Eq. (37) for the egg 
cell membrane of the starfish, Mediaster aequalis is shown in Fig. 2. Note 
that a reasonable fit of the theoretical curve to the data can be obtained 
and that this fit yields the value v = 8.43 mV, which, according to Eq. (19) 
is equivalent to n=3.  Thus, the present model would suggest that the 
"gating site" of the inward-going rectification channel in the starfish egg 
cell membrane has a net charge of - 3 .  

Discussion 

The Physical Basis for Rectification and the A V Dependence 
of the Conductance According to the Present Model 

The model presented here is based on the concept that rectification is 
intrinsic to the mechanism of pore formation, and is not due to asym- 
metric profiles of the energy barrier in the open pores. The membrane 
potential and the concentration of external potassium are both assumed 
to affect the density of open pores, and the way in which these parame- 
ters are combined in the treatment results in an expression for the 
number of open pores, Eq. (26), that can be written as a function of the 
displacement of the membrane voltage from the equilibrium potential of 
potassium. The suggestion that the permeability to potassium may be 
viewed as a function of V-V~:, rather than of the membrane potential 
alone, has already been made in the past by a number of investigators 
working on muscle fibers (Hodgkin & Horowicz, 1959; Nakamura, 
Nakajima & Grundfest, 1965; Horowicz et al., 1968; Adrian, 1969), and a 
very clear quantitative description of this property of the conductance 
was given for the rectifying membranes of a starfish egg cell (Hagiwara & 
Takahashi, 1974). 

In terms of the present model, the intuitive explanation for the 
conductance decrease at positive A V's is that positive membrane poten- 
tials and/or low external potassium concentrations, both of which make 
A V positive, are unfavorable conditions to the formation of permeable 
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pores, the reason being that a positive increase of the membrane poten- 
tial has the effect of preventing the molecules from orienting themselves 
perpendicularly to the surface and a decrease of the external potassium 
concentration diminishes the degree of ion binding to the oriented 
molecules. Conversely, the saturation of the number of available pores at 
high negative A V can be rationalized in terms of the fact that at high 
hyperpolarizing membrane potentials and/or at high external potassium 
concentrations, both of which make AV more negative, most of the 
available channel-forming molecules are in the "permeable channel" 
configuration, so that a further increase of either hyperpolarization or 
external potassium concentration has no effect on their number. 

Recently, an internal perfusion technique has been developed for 
tunicate egg cells (Takahashi & Yoshii, 1978) which could, in principle, 
be applied to starfish eggs, thereby allowing one to assess the dependence 
of conductance on internal ion concentration and to determine whether 
the predictions of the "electrochemical-gating" model apply to that 
measurement as well. Therefore, it is worth examining explicitly the way 
in which this model predicts that the conductance will vary as a function 
of the internal concentration of potassium. 

Assuming that the external potassium concentration, % is held 
constant and that the membrane is clamped to a given potential, ~b, then 
introducing Eqs. (14), (16), (26), and (27) into Eq. (32) yields (after 
simplifying), 

G =D1 (38) 

l + D 2  (1+ ~ K , . c l  r 
\ r= l  

where D 1 and D 2 are constants given by 

and 

f 2 
D 1 = ~  [A] T~ lfC~ f'(qS) (39) 

enO 
(40) D2 = K *  c~" 

Equation (38) illustrates that in general, the conductance measured at a 
constant voltage and external K + concentration will vary with changes 
in the internal K + concentration. The nature of this variation will 
depend, however, on the fraction of unoriented pore-forming molecules 
which have bound one or more internal K + ions. When that fraction is 
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small (i.e., ~ K r c l r ~ l  in Eq.(38)), the ratio G/]/~ is expected to 

remain approximately constant, and so is, of course, the density of pores; 
whereas when a significant fraction of unoriented molecules have bound 

( ~ ' r > l )  the quantity G/] /~ is expected to internal K+'s i.e., K ,c  i = , 
r = l  

decrease with increasing internal K +. It is thus clear that experimental 

findings showing either a decrease or constancy of G/]~ .  with increasing 
internal K + would be compatible with the model, whereas an increase of 
the same quantity would not be so, suggesting that major modifications 
are necessary. 

The Conductance Behavior Expected fi'om the "Occupancy-Gating" 
Class of Mechanisms 

An alternative class of models for the dependence of conductance on 
A V (rather than V) is the one, which we have referred to as "occupancy 
gating", in which the probability that a channel is in an "open" (con- 
ducting) state is determined by the presence of ions inside the channel. In 
Appendix B we have derived the expression for the ionic flux predicted 
by this type of model, assuming that the channel can be occupied by no 
more than one ion at a time. Briefly, the pore is schematized as 
consisting of a single site ( = free energy well) separated from the aqueous 
solutions by two activation-energy barriers. The transition from the 
"open" to the "closed" state is described as a first-order reaction as a 
result of which the energy barrier between the site and the internal 
solution rises so high as to prevent further exchange of ions with that 
solution. The different states of the channel (open/empty, closed/empty, 
open/occupied, and closed/occupied) as well as the rate constants de- 
scribing transitions between those states are illustrated in Fig. 3. Note 
that the heights of the activation-energy barriers and of the energy well 
can be different for each state of the channel, whereas the positions in the 
membrane of these barriers and wells (i.e., the fraction of the transmem- 
brane potential which they sense) are assumed to be the same for all 
states. 

Utilizing this model, a general expression was derived in Appendix B 
for the ionic flux, and it could be seen that the only case in which the 
expression for the conductance becomes somewhat similar to Eqs. (1) or 
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Z 0 / ', 

)v, 7 "  

Fig. 3. Schematic diagram of the four states and of the transitions between them for the 
two-barrier, one-site model of a channel considered in the analysis of the "occupancy 
gating" mechanism. The crucial feature in the model is that the values of the rate 
constants for transition between a "closed" to an "open" state (and vice versa) depend on 

the state of occupancy of the pore 

(37) was that in which the peak of the external barrier is displaced almost 

to the "internal end" of the pore (i.e., in Fig. 3, p~-~l and 
P2-~qt-~q2-~0). In this limit, the conductance can be written in the form 

[cf  Eq. (B23)] / , ( 2  sinh A2~- ) 

C t _ _  

G = - -  e 2 (41) 

+ 2  

where 
/ •  C r 2  

A qS~ = In ] /  o_a (42) 
F we 

and W o, W 1, W 2, #20 and ~21 are constants (assuming p l = l  and 
p2~-ql ~-q2~-O) for a given internal K + concentration, as it can be seen 

from Eqs. (B17)-(B21). 
Considering that over the present experimental ranges of A4 (cf 

Fig. 2) A 4 
2 sinh - -  

2 
-~ 1, (43) ~q~ 

Eq. (41) can be made to come closest to the empirical behavior observed 
for anomalous rectification (cf. Eq. (1)) by assuming the validity of the 
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approximations 

and 

c' ~f2~ 

cosh (A , ~ 1 q5 - A q5 h ) - ~ exp (A qb - A ~b~). 

(44) 

(45) 

Inserting the limits defined by Eqs. (43)-(45) into Eq. (41) yields 

where 

z2 F 2 f2 o ]~i ic ' i  e - a  
G= 

R T  W 1 l+exp(A~o-Aqoh) 
(46) 

e -- A 4~h __ W2 ,. (47) 
W1 ci 

Two discrepancies still exist between Eq. (46) and the behavior 
observed for anomalous rectification. The first is the factor e-e/2 which 
does not appear in Eq. (1); the second is the fact that the exponential in 
the denominator should contain a factor n times the term (d ~b- A q~h), 
this factor equaling 3 for the present experiments. It is possible that this 
second deviation could be adjusted by assuming that three ions (rather 
than one) must simultaneously occupy a binding site within the channel 
near the inner mouth of the pore. Even if this assumption were made, 
however, one could not readily get rid of the factor, e -q~/2 in the 
numerator. 4 At first, it might seem that this factor could be reduced by 
assuming that the potential energy profile for the "open" channel was 
different from that of the "closed" channel (e.g., perhaps the highest 
barrier for ion migration through an open channel could sense one-half 
of the voltage drop across the membrane, whereas this same barrier 
could be located at a position near the inner surface of the membrane 
when the channel is closed). However, such an assumption will not 
remedy the situation, since allowing for the possibility of shifting the 
location of the wells and the peaks in the "open to closed" and "closed 
to open" transitions will influence the voltage-dependence of the rate 

4 This factor would appear as a deviation of the data points at low K + concentrations 
and large A V's in Fig. 3 above the theoretical curve (e.g., at A V= - 6 0  mV the data for 
10 mM K +, for which V o = - 7 1  mV, would be more than three times larger than the value 
predicted by the (saturating) theoretical curve. If anything, a deviation in the opposite 
direction is observed). 
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constants for "blocking" and "unblocking" in such a way that the 
dependence of gating on A V would be los t /  
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Appendix A 

Derivation of the Explicit Expression for the Density of Pores, 
Eqs. (12) and (13) 

A complete kinetic analysis for the calculation of the density of pores 
in the membrane would require that all the steps shown in the diagram 
of Fig. 4 be taken into account. For example, the rate of formation of the 
pore molecules, A*, in the case in which 0 <s  <n  would be given by the 
sum of the net rates of the three following reactions: 

and 

2 ,  As* (A1) As*_ 1 + I  ~k~, s-1 

---, A~ +1 (A2) As*+ 1 <ks* s+l 

kFs eZ(n-s),4, 
As (k~e z('-s)(l-~)e ) Ay. (A3) 

Equations (A1) and (A2) describe the binding of an external cation to a 
pore with s - 1  already complexed subunits, and the dissociation of a 

5 Such voltage-dependence of"gating" is not always easy to predict intuitively, however. 
For example, in the limit in which the pore will open only when occupied by a K + ion 
(Armstrong's "knock-on" mechanism), one might expect intuitively that the number of 
"open" pores would be simply proportional to the external K + concentration and to the 
exponential of the voltage drop between the external solution and the K + binding site 
inside the pore (cf Armstrong, 1975). Such a result would be expected to follow from 
the assumptions that the rate constant for "opening" is proportional to the number of 
closed pores with occupied sites, and that the degree of ion-binding by sites of closed 
pores can be related to voltage and external K + concentration by simple equilibrium 
laws. As a matter of fact, however, if the pores are not permanently "closed", and if there 
is a flux of K + when the pores are "open", the steady-state probability of K + occupying 
the internal sites in closed channels will not be relatable to voltage and external 
potassium by simple equilibrium laws, but will be described by a more complex function 
of the voltage, of all the rate constants for transition between "closed" and "open" states, 
as well as of the external and internal K + concentrations. 
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Fig. 4. A diagram of the postulated kinetics in "electrochemical gating". The reactions at 
the inner side of the membrane (vertical arrows at the left side of the figure) indicate the 
various stages of complexation between the unoriented channel precursors and the 
internal cations; those at the outer side of the membrane (vertical arrows on the right 
side) refer to analogous reactions between the pore molecules and the external cations. 
The horizontal arrows suggest that, in principle, all types of molecules may rotate. 
However, all the results in this paper correspond to the limiting case in which the fully 

charged molecules, A o and A~ are the only ones to undergo orientation 
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cation from a pore with s +  1 complexed subunits, respectively. Clearly, 
reaction (A1) is not  applicable to the case of s = 0, nor  is reaction (A2) to 
the case of s=n.  Equat ion (A3) denotes the orientat ion of a gating 
molecule assumed to be describable by an Eyring formalism with a single 
activation energy barrier, z is the valency of the individual groups in the 
gating molecules ( z = - I  in our model), n - s  is the number  of net 
negative charges, q5 is the membrane  potential  in R T /F  units, and ~ is the 
fractional distance (distance in units of membrane  thickness) of the 
activation energy peak from the inner side of the membrane.  The 
exponentials, e z ( ' - s )~  and e --~(n-~)(1-~)~ express the extent to which the 
height of the energy barrier relative to the two adjacent wells is modified 
by the membrane  potential. Stipulating that  the rate constants, k* ~, o, 
k*0,_l, k,,,+l* and k,+ ~, , are equal to zero, the net rate of format ion of 
A* for s = 0, 1, ..., n can be condensed in the following expression 

d [ A * ] _ k * l ,  c i [ A * l ] - k *  * . . �9 dt  s ~, s- 1 [As ] JckL1, s[As+l] -ks ,  s + l  ci[As ] 

+ kF[As] e~(,,- s)~ _ksB [As] e ,  z(n-s)(1-~)(o (s=0,  1, .. . ,  n), (A4) 

where c i denotes the external concentrat ion of cations and the various 
rate constants are all defined in Eqs. (A1) to (A3). For  the unoriented 
gating molecules, we could write the analogous equations 

d [ A ~  

dt  

B * e-Z("-s)(1-~)r  e ~( ' -s )~ (a=0 ,  1, . . . ,n)  (A5) +ks [As] 

where it is again unders tood that  k 1, 0 = k0, - ~ = k , , ,  + 1 = k,  + 1, , -  O. 

Imposing the condit ions of steady-state on Eqs. (A4) and (A5) " (_d 
EA*] 
dt  

we wou,d a  yst m homogeneous 

equations, only 2n + l of which, however, would be linearly independent.  
These 2 n +  1 relationships, together with the conservation equat ion 

[A] ro~= ~ {EAr] + [A*]} (A6) 
r = 0  

constitute a nonhomogeneous  system of 2 n - 2  linear equations, from 
which [As] and I-A*] could be finally calculated as explicit functions of 
all the rate constants, of [A] T~ of the membrane  potential, and of the 
concentrat ion of the binding ions. Al though conceptually trivial, the 
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algebra is already unwieldy for n = 2. A substantial  simplification, howev- 

er, is b rought  about  by the assumption,  discussed in the text, that  the 
only species of gating molecules which are oriented by the electric field 
are the ones which have no bound  cations�9 Under  this approximation,  all 
the rate constants for orientat ion of the aggregates which have at least 
one complexed cation, k F and k~, with (s :t= 0) are set equal to zero. With 
this simplification, it is very easy to verify that  the steady-state solution 
of the system of Eq. (A4) is given by the relationships 

[A*] k*_~,, - k *  ,,_ -1 q [ A * _  1] (A7) 

[A*_ 1] - k*_ 2, , - - ~  c~ [A,* 2] (A8) 
~ -  1 , n - 2  

�9 k *  
. s- 1,s [As. - 1] (A9) [As 3 ci 

S,S--1 

EA~] = k~o e "~ [Ao]. (A10) 

By successive el imination of the intermediate concentrat ions in the above 
equations and defining 

k* k* * ] , = k ~ ,  , . _  0 ,1  1 , 2  . . .  k s - l . s  
Ks - 1"7- i 7 -  r~i. ,va k_-~_ - - ( s = l ,  2, . . . ,  n), ( a l l )  ag 0 2 ,1  s , s - 1  

it is easy to deduce that  

EA~s] -- K s* c iSFe-nO[AO] (s = 1, 2, .. . ,  n). (a12) 

Using similar considerations for the unor iented molecules, the steady- 
state solution of the system (A5) is found to be 

where 
[As] = K s c'~ S [Ao] (s = 1, 2, .. . ,  n) (a13) 

K s = k o ,  1 k l , z  ... k s - i , s  ( s = l ,  2, . . . ,  n). (A14) 
kl, o k2, 1 ... ks , ,_x  

Substi tut ing Eqs. (A10), (A12) and (A13) into Eq. (A6) then yields 

(A15) 
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Finally, eliminating [Ao] from Eqs. (A10) and (A15), as well as from 
(A12) and (A15), we obtain Eqs. (12) and (13) of the text. 

Appendix B 

A Single-Site, Two-Barrier Eyring Model for an 1on-Permeable Pore, 
Extended to Allow for a Transition between Closed and Open States 

In this appendix we will attempt to account for "inward rectifi- 
cation", assuming that the ion-permeable pore is capable of undergoing 
transitions between conductive ( = o p e n  or unblocked) and noncon- 
ductive (=  closed or blocked) states. 

Using an Eyring formalism, we represent the pore as a sequence of 
free energy wells separated by activation energy barriers, and, for sim- 
plicity and without compromising the generality of our main con- 
clusions, we shall assume that such a pore can be described by a single 
internal well and two barriers (see Fig. 3). "Blocking" of the pore will be 
ascribed to a monomolecular process as a result of which the inner 
barrier, which separates the site in the pore from the internal solution, 
becomes sufficiently high to stop further ionic movement. Since the 
transition from an "open" to a "closed" state may occur when the 
internal site is either empty or occupied, we shall consider two rate 
constants for "opening", 2o and 21, as well as two rate constants for 
closing, Z0 and )~1, where the subscripts, 0 and 1, denote that the pore is 
empty or occupied, respectively. It will be assumed that all the four rate 
constants, 2 o, Zo, 21 and )~1 are independent of voltage. When the 
channel is open, the rate constants for "inward" movement (i.e., from the 
cell exterior towards the cell interior) across the external and internal 
barriers will be denoted by % and 7, respectively, while those for 
"outward" movement by/?v and &. The subscript U in ~ and p is meant 
to indicate that the rate constants, ~v and Pv refer to the case in which 
the pore is "unblocked". If Pl, ql, P2 and q2 denote fractional distances 
(distances in units of membrane thickness) between the peaks of the 
activation energy barriers and the neighboring wells (see Fig. 3), the 
dependence of the four rate constants: ~v, 7, flu and & on the total 
membrane potential, ~b, can be expressed, using the usual Eyring for- 

malism, by 

~u=~u e-Pl4); 7 = 7e-p2e; fly=fly eqzO; &=&e q2o, (B1) 
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where 4) is electric potential in units of R T / F ,  and the four quantities, gv, 
7, flu and cf are assumed to be independent of voltage as well as of ion 
concentration. 

When the pore is "closed", translocation of ions across the internal 
solution and the pore is impeded, whereas ion exchange between the site 
in the pore and the external solution is still possible and will thus be 
described by the two additional rate constants, % and fiB. Assuming that 
the location of barriers and wells is not affected by whether the pore is 
open or closed, the dependence of such rate constants on the membrane 
potential will be 

r B = C~-B e - P* * ; f iB=f iB  eq14' (B2) 

where Pi and ql have the same values as in Eq. (B1). 
According to this schematization of the pore, the total number of 

pores per unit surface, N T~ can  be subdivided into the following four 
classes" 

Nv(0 ) =unblocked  and unoccupied 

NB(0 ) = blocked and unoccupied 

Nv(1) = unblocked and occupied 

NB(1) = blocked and occupied. 

If c i and c'z denote the external and internal concentrations of ion, 
respectively, the rates of formation of each of the above-listed states are 
given by 

dN~(O) 
d t - flu Nu(1) - ~u ci Nu(O) + )~o NB(0) -- Zo Nu(0)+ 7Nu(1) - 6 c; Nu(0 ) 

(B3) 

dNB(O) 
dt - Zo nv(o) - ~o NB(O) + fib NB(1) -- % ci i s (O)  (B4) 

dN~(1) 
dt -2 ,  NB(1)-Z, Nor(l)+ % c~ Nv(O)-fi~ Nu(1)+cSc; No(0)-TNu(1 ) 

(BS) 
dN,(1)  

dt - Z l  Nu(1)-21NB(1)+:~SqNB(O)--f iBN~(1)  (B6) 

where all the rate constants have been defined previously. Adding up the 
four equations above, one realizes that the sum of the right-hand sides is 
identically equal to zero, which is consistent with the conservation 
equation 

Nv(O ) + N~(O) + Nv(1 ) + NB(1 ) = N T~ (B7) 
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The steady-state number of pores of each type per unit surface can be 
calculated by solving a linear system of four equations, constituted by 
Eq. (B7) and by any group of three of the four equations (B3), (B4), (B5) 
and (B6), in which the left-hand side has been set identically equal to 
zero. The transmembrane flux of ions at steady state will finally be given 
by 

J = 7N~r (1)-  c5c' i N•(0). (B8) 

Constraints on the Rare Constants Imposed 
by "Microscopic  Reversibi l i ty" 

Since the rate constants introduced in the previous section are 
independent of ion concentration, so also must be any relationship 
between them. We shall now consider the case of equal concentrations in 
the two solutions simply because the derivation of certain important 
relationships is easier in this situation, although it should be clear that 
they remain valid in much more general conditions, such as in the 
presence of ionic and potential gradients. 

When the permeant ion concentrations are the same in the two 
solutions (q=cl), and when there is no potential difference across the 
membrane, the energy levels at the two channel mouths must be the 
same. Recalling that in Eyring theory the rate constants are exponential 
functions of the activation energy barriers, this implies that at equilib- 
rium 

% 7 = fie ~. (B9) 

If we then make the additional assumption that the profile of the electric 
potential within the membrane is flat at equilibrium (i.e., the electric field 
equals 0), Eq. (B9) becomes, with the help of Eq. (B1), 

~v ~7 = flu c~. (BIO) 

Since the flux of ions is zero at equilibrium, recalling that c~ = c' i and that 
the electric field is assumed to vanish, we deduce from Eqs. (B8) and (B10) 

N v ( 1 )  _ Jci _ Yv ci (Bll) 

As a consequence of Eqs. (Bll) and (B1), Eqs. (B3), (B4) and (B5) show 
that at equilibrium, for c i = c~ and zero electric field inside the membrane, 
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we shall have 

Nu(O)_2o. NB(1) = NB q,  Nu(1) _ 21 
NB(O) )~0 ~/B(O) fib NB(1) Zl 

(B 2) 

Making use of the identity 

Nv(1)_Nu(1 ) Nv(0) NB(0 ) 
NB(1 ) Nv(O ) NB(0 ) N~(1) 

(B13) 

the relationship (Bll) and (B12) give 

/~1 =~=v 20 fib 
or 2~ZOgBfiv=2oZ~Y~VfiB. (B14) 

Zl fly Z0 G 

Equations (B10) and (B14) indicate that out of the ten rate constants 
introduced only eight are independent. 

Steady-State Ionic Flux 

J= - 2  

where 

Setting the left-hand sides of eqs. (B3), (B4), (B5) and (B6) equal to 
zero, and solving for Y from the system of five Equations, (B7), (B8) and 
any group of three of the four equations (B3), (B4), (B5) and (B6), one 
finds 

t'2~ e~--v~-P2~e ~ sinh [A~] (B15) 
Wo c2 e- 2O + W1 cie-r + W2 

A ~b =0-qbo=~b- ln  ci (B16) 
c'i 

(20 =NT~ ~U Y21 ~B e(1-Pl)q~ (B17) 

Q1 = N ~ 7;oo(fi. eql +. l +Zl G/Pv) (BlS) 

Wo =(Zl +21) ~:v ~B e2(1-Pl)O (B19) 

W1 = [gB ~eq2e(Z1 +21) c'~+gB(fiv eqlr +~Te-P2*)()ol + Zo) 

G 

+(X~ +2~)(2o Y~v+Zo Y.B)+gv fi8 eq~4)(2O+Zl)] eIl-p~)4 (B20) 

=Jeq2~ fib eq'4' + 2o(fiB eqlr Zl -]- ~'1)] Cl 

+(2o+Zo)EZ1 fib eqlO+(fiu eq'O+Te-P2+)(fi~ eq~*+21)] �9 (B21) 

From these equations it is apparent that the expression for the 
conductance deducible from Eq. (B15) is in general much more corn- 
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plicated than either Eqs. (1) or (37). The case in which Eqs. (B15) and (37) 
become as close to each other as possible is the limiting situation in 
which the peak of the external barrier is so close to the inner boundary 
that 

P l ~ l ;  ql~--q2~--p2"~O. (B22) 

This is the only case in which the five quantities, f2o, ~'~1, Wo, W1 and W 2 
are all independent of potential. Recalling Eqs. (B16) and (B22) and 
rearranging, Eq. (B15) can be written in the following form 

J =  - 2  

w h e r e  

Oo+ 

W1 {1 +2 ]/-Wo0 w2 c o s h [ A O _ A ~ ] }  e-O/2l~iic'isinh ; 
W~ (B23) 

/Wo c12 
e O h  V W2  (B24) 

Equation (41) in the text can now be obtained from Eq. (B23), recalling 

that I FJ F 2 I 
G - - - (B25) 

AV AV R T A 4  

where I is the current density. 

1) As: 

A*~: 
B: 
Ci, Ci " 
D1,D2: 
f(~b), f'(~b): 

k~_ 1,~, (k . . . .  1)" 

9) 1.* (k* 1): I~S--I,s~ k S,S 

lo) :,, k~: 

List of Symbols 

Latin Alphabet 

unoriented pore-forming molecule with s complexed cations (s 
= 0 ,  1 . . . . .  n). 
pore with s complexed cations (s = 0, 1, ..., n). 
defined by Eq. (36). 
external and internal concentration of the permeant cation. 
defined by Eqs. (39) and (40). 
cf Eqs. (29), (30), and (31). 
conductance of a single A* pore (s = 0, 1, ..., n). 
rate constants for binding (dissociation of) an ion by (from) an 
unoriented pore-forming molecule with s - l ( s )  complexed cations 
[see Eq. (A5)]. 
same as above, except that they refer to pore molecules [see Eqs. 
(A4) and (A1)]. 
electric field-independent fractions of the forward and backward 
rate constants for orientation of pore-forming molecules with s 
complexed cations [cf Eq. (A3)]. 
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11) Ks: 

12) K*: 

13) Ls, L: 
14) n: 

15) Pl, P2, ql, q2: 

16) v: 
17) V: 

18) Wo, W1, W2 : 
19) z: 

equilibrium constant for the binding of s internal cations by an 
unoriented pore-forming molecule [cf. Eq. (10)]. 
equilibrium constant for the binding of s external cations by an 
oriented gating molecule [cf. Eq. (9)~. 
defined by Eqs. (20) and (21). 
number of subunits in each pore-forming molecule and maximum 
number of ions bound by such a molecule. 
fractional voltage drops between energy-peaks and wells in the pore 
considered in the "occupancy gating" model. See Fig. 3. 
defined by Eq. (19). 
membrane potential, defined as the electric potential difference 
between the interior and the exterior of the cell. 
defined by Eqs. (B19), (B20) and (B21). 
valency of the subunits of the gating molecules. 

Greek Alphabet 

1) e: fractional voltage drop between peak and well of the activation 
energy barrier for orientation of the gating molecules (cf. Eq. (A3)). 

2) ]7, c~, state-transition rate constants in the "occupancy gating" model (see 
~2o, Zo, 2> Z1 Appendix B and Fig. 3). 

3) %, ~B, fi~, G ,  
~, 5: particular values of the above first six rate constants in the con- 

dition of zero electric field. 
4) F: v B . k~/k S with s = 0  (cf. 10 in the list of Latin alphabet letters). 
5) A Vo: V - V  o, where V o is resting potential. 
6) AVh: defined by Eqs. (22) and (27) in the "electro-chemical-gating" 

model. 
F 

A4,: - - A V .  
RT 

d 0h: defined by Eq. (47). 
d ~b~: defined by Eq. (42). 

F 
RT 

co: defined by Eq. (14). 
f2o, ~ :  defined by Eqs. (B17) and (B18). 

7) 

8) 
9) 

lO) 

11) 
12) 
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